import numpy as np
from sklearn import ensemble
from sklearn import datasets
from sklearn.linear_model import LogisticRegression
from sklearn.datasets import make_hastie_10_2
from sklearn.ensemble import GradientBoostingClassifier
def PreLR_GBDT(clf,Features):
result=clf.apply(Features)[:,:,0]
classT=np.zeros(result.shape[1]+1)
for num in range(0,result.shape[1]):
classT[num+1]=max(result[:,num])
classT=classT.cumsum()
classT=classT.astype(np.int32)
M=np.zeros((result.shape[0],classT[-1]))
for num in range(0, result.shape[0]):
for num2 in range(0, result.shape[1]):
M[num, classT[num2] + result[num][num2] - 1] = 1
return M